Odds Of Flopping Quads In Texas Holdem
2021年10月27日Register here: http://gg.gg/wbvhu
The charts below show the probability of getting a hand on the turn, on the river, or both in Texas Holdem. These charts show you example derived on the particular number of outs. The Probability is displayed in percentage, probability, 1 in y, or y to 1 format (if you cann’t make sense of it, visit our explanation of odds article). Probabilities may also be presented with 0 to 9 decimal places. Because these odds are founded on outs, it’s solely describing your probability for a card or cards to turn up founded on the quantity of wanted cards left and the quantity of cards left in the deck (47 or 46 for the turn and river). The majority of samples describe circumstances where you are not a fix to win, however illustrate the logic why that many outs are being simulated, based on the number of outs. Please note that you may need to disable popup blocking in order to the see the outs samples.ProbabilityPercentageProbability / Odds AgainstPair preflop61 in 17 – 16:1Suit cards preflop241 in 4.2 – 3.2:1Suit Connectors (2/3, KQ, …)41 in 25 – 24:1AA or KK preflop.91 in 111 – 110:1AK preflop1.21 in 83 – 82:1AKs preflop.31 in 332 – 331:1A in hand preflop161 in 6.25 – 5.25:1AA, KK, QQ, JJ1.81 in 56 – 55:1Flop being all one kind (JJJ or QQQ).241 in 425 – 424:1AA versus KK preflop (heads up).0041 in 22560 – 22559:1AK dealt preflop and hitting an A or K by the river501 in 2 – evenQQ versus AK heads up till river561 in 1.78 – 14:11 favoriteTwo cards preflop that are Js or higher91 in 11 – 10:1Beer Hand (72off) preflop (or any other nonSuit two
card combo).91 in 110 – 109:1Four flush completing (JsTs Flop Qs4sAd 6h Ks)391 in 2.6 – 3:2Open Ended Straight-Flush completing to flush or
straight by river541 in 1.85Open Ended Straight completing (JT Flop Q94 86)341 in 2.9 – ~2:1Two Pair on flop edifying to Full House171 in 5.8 – ~5:1Three of a kind (set) on flop edifying to Full House
or Quads371 in 2.7- ~3:2Pocket pair edifying to three of a kind on flop121 in 8 – 7:1No pair hand preflop edifying to a pair on the flop
(either card)321 in 3.125 – ~2:1If you have Suit cards, two will flop111 in 9 – 8:1One pair on flop edifying to two pair or three of a
kind by river221 in 4.7 – ~4:1Pocket pair edifying to three of a kind after flop91 in 11 – 10:1Two over cards edifying to a pair by river261 in 3.9 – ~3:1Two over cards and a Luck edifying to pair or
straight431 in 2.3 – 4:3Luck straight draw hitting by river171 in 6 – 5:1Luck and pair edifying to two pair or better391 in 2.6 – 3:2Backdoor Flush hitting (5s6s Flop 7sAh9c KsJs)41 in 24 – 23:1Runner Runner Straight (56 Flop 3TQ 47)1.51 in 68 – 67:1Backdoor Flush and One Over Card edifying to that pair
or flush171 in 6 – 5:1Catching Ace on turn or river (A4 Flop Q63 KA)131 in 8 – 7:1Backdoor Flush and Luck edifying to one by river
(Ac4c Flop 3s5cKs)211 in 4.8 – 3.8:1Backdoor Flush And Two Over Cards edifying to pair or
flush301 in 3.3 – 2.3:15 players on flop, that somebody has an A once one is on
board581 in 1.74 players on flop, that somebody has an A once one is on
board471 in 2.13 players on flop, that somebody has an A once one is on
board351 in 2.92 players on flop, that somebody has an A once one is on
board231 in 4.33 of one suit on board and another coming (QsTs2s) if
you have one391 in 2.6 – 3:25 players in with board paired, prospect of one of them
getting it431 in 2.44 players in with board paired, prospect of one of them
getting it341 in 33 players in with board paired, prospect of one of them
getting it261 in 42 players in with board paired, prospect of one of them
getting it171 in 5.8
After the flop, the decisions in Texas Holdem get a bit tougher. Understanding pot odds will help determine your best action from here. Check out our Texas Hold’em Pot Odds article to learn more about pot odds, what pot odds are, calculating your pot odds, implied odds, etc. You can also view our Texas Hold’em Pot Odds Chart here. Pocket jacks is known as a big danger hand in Texas Hold’em. It may look good, but the chances of a higher card turning up on the flop is 52%, giving your ‘fish-hooks’ less than half a chance of survival.
Winning Texas holdem poker players have to have a solid understanding of odds and pot odds.
Many inexperienced players make the mistake of assuming odds and pot odds are the same thing. While the two things are related, they aren’t the same.
The first thing you’re going to learn is what odds and pot odds are, how to quickly calculate them, and how to use them to improve your results at the table. Then you’ll find an extensive list of examples so you can practice what you’ve learned.
It’s a good idea to bookmark this page so you can come back and go over the examples frequently. The more times you go over them the better your ability will be to make the correct decisions at the holdem table.
The best way to develop strong odds and pot odds calculating skills is to study this page and then use what you’ve learned in live Texas holdem play. You’ll make mistakes as you play, but every time you make one make a mental note or write it down.
Then study these situations after the game to see where you made a mistake and learn how to avoid making the same mistake in the future.
A mistake that many new Texas holdem players make is not learning about odds and pot odds because they’re afraid of the math or that it’s too hard. While both items do involve some math, it isn’t difficult once you understand it.
More importantly, the most common odds and pot odds situations happen frequently so you’ll quickly memorize the important situations and won’t have to calculate many hands while playing.
You’ll also learn a few quick tricks and tips that the pros know to help you make fast decisions in the middle of a hand.Odds
Odds are a mathematical way of explaining how likely or unlikely something is to happen.
You can use odds in two different formats. The first one is a percentage and the second is a ratio. Some players find percentages easier to work with, but you need to learn how to consider Texas holdem odds as ratios. This is important because when you start using pot odds if your odds are already in ratios it saves a step. If you have the odds in percentages you have to either convert the pot to a percentage or convert the odds from a percentage to a ratio.
If this seems confusing, don’t panic. The rest of the page covers odds and pot odds using ratios so you’ll learn the best way possible.
Here’s an example of how you use odds in Texas holdem.
If you have pocket queens and have already seen the flop and it has no queens, what are the odds a queen will land on the turn?
To determine the correct odds you need to determine how many unseen cards remain in the deck. You’ve seen your two hole cards and the three board cards. So you’ve seen five out of 52 cards, leaving 47 unseen cards. You also know that there are two more queens.
This means that two of the remaining cards will give you another queen and 45 of them won’t.
This gives a ratio of 2 to 45 or 45 to 2, depending on how you want to list it. Usually the odds against number is listed first, so you’ll see 45 to 2 or 45:2.
In simpler terms, this means that on average, if you play this exact situation 47 time that you’ll get a queen twice and a card other than a queen 45 times.
If a queen doesn’t land on the turn, what are the odds of one landing on the river?
You’ve seen one more card so two cards are still queens and 44 aren’t.
Here’s another example.
If you have four to a flush after the flop, what are the odds the turn will make a flush for you?
In this situation you have 9 cards out of 47 unseen that will complete your flush. So 9 cards complete your flush and 38 don’t. This means 38 to 9 or 38:9.
If you don’t complete your flush on the turn the odds change to 37:9 on the river.
But what about the cards in your opponent’s hands and the ones that are already in the muck?
Don’t make the mistake of thinking that because your opponents have seen their cards that you don’t count them in your calculations. The only numbers that matter are the number of cards you’ve seen and the number of cards you haven’t seen.
Sometimes the card or some of the cards you need are in other player’s hands or in the muck, but it doesn’t matter. The cards you need are just as likely to be in the remaining cards to be dealt and in the long run they’ll be in any particular location an equal number of times based on the probabilities.
The way many players visualize this is by assigning each place in the deck of cards a number, 1 through 52. As the deck is ready to have the first card dealt the top card is number 1 and the second card is number 2 down to the bottom card being number 52.
As the cards are dealt, burned, folded, etc. more cards are used from the top of the deck. It doesn’t matter what happens to each card or if you see it or not.
In the long run each card has an equal chance to be number 1, number 36, number 52, or any other number. Over millions of hands each individual card will be in each of the 52 places the same number of times.
This means that if you need the ace of clubs to complete your hand it’s an unseen card and doesn’t matter where it’s located during the current stack. Over the long run it’ll be in each of the 52 positions an equal number of times, so all you can do is work with the seen and unseen cards.
You can also use odds to determine the likelihood of other things happening during a hand.
What are the odds that the first card you’re dealt is an ace?
You know the deck has 52 cards and four aces, so the odds of the first card you receive being an ace are 48:4. This can be reduced to 12:1. You reduce ratios by dividing the same number into both numbers. In this case you divide both 48 and 4 by 4.
Another way to look at this is 1 out of every 13 cards on average is an ace. This makes sense because each suit has 13 cards and one of them is an ace.
Ratios are important because you use them when determining pot odds. You’ll learn more about pot odds in the next section.
But if you want to know the odds of things like getting dealt pocket aces you need to use a different kind of probability.
Before teaching you about this type of probability you need to make sure you want to try to learn it. If you’re getting confused or worried about all of this math, skip to the pot odds section. It builds on what you’ve already learned and you don’t have to know anything about this next part in order to be a master Texas holdem player.
The main difference is you need to look at the possibilities of how many events out of how many possibilities instead of the positive verses the negative. This is easier to understand using an example.
As you’ve already seen when you determine a ratio or odds you compare the cards that can help you and the ones that can’t. When you determine the possibility of getting dealt pocket aces you need to use the number of cards that can help achieve this out of the total number of cards.
So the odds of getting an ace as the first card are 4 out of 52 and as your second card are 3 out of 51. After the first card there are only 51 remaining cards in the deck and only 3 remaining aces.
Here’s why this distinction is important. To get the actual chances of being dealt pocket aces you put 4 over 52, like a fraction, and 3 over 51 and multiply them.
This gives you the chances of being dealt pocket aces as 220 to 1.
When you multiply the fractions you get 12 over 2,652, which reduce to 1 over 221. This is then made back into a ratio like discussed above. 1 time you receive pocket aces and 220 times you don’t, so the odds are 220 to 1.Outs
Once you understand how odds work, the next thing you must understand is how to determine how many outs you have in any situation where you need to understand your pot odds.
You combine your knowledge of odds with the number of outs and the amount in the pot and of the bet you’re facing to figure out your pot odds.
Your outs are the cards that improve your hand enough to win the pot. Rarely can you be 100% sure about every one of your outs, but in most situations you can make an educated guess.Example
If you have a king and a ten and the flop has an ace and a king, if one of your opponents bets the odds are they have an ace. This means you’re behind in the hand, but if you hit one of the other two kings or one of the remaining three tens on the turn or river you stand a good chance to win.
You can’t be certain either a king or ten will win the hand because your opponent may have a set of aces or two pair with aces and either kings or the other flop card. This isn’t likely but it does happen.
One of the most common situations concerning outs is when you have four to a flush on the flop. This leaves nine outs to complete the flush. Each suit has 13 cards and you have four of them, leaving nine outs.
But will each of the nine cards guarantee a win?
Rarely is anything guaranteed at the holdem table. If the board pairs and you hit your flush you can still lose to a full house. If you don’t have an ace high flush you might lose to a higher flush.
When you’re trying to determine how many outs you have, try to make a realistic guess on how many will actually win the hand.
You need to use everything that has happened in the hand so far, what you know about your opponents, and the range of hands your opponent is likely holding to make your best estimate.
This information is directly related to the level of competition you’re facing and the limits of the table.Example
When you’re playing at micro or low limits and your competition isn’t very good overall it’s likely that any flop that holds an ace has paired an ace in someone’s hand. Low limit players often play any ace. While better players and higher limit players also play hands with aces, they usually don’t play the ones with smaller side cards like you see at the lower levels.
When you’re trying to determine your number of outs you can adjust the number based on different factors. If you have 10 outs but think that 10% of the time your opponent will hold a better hand anyway you can adjust your outs to nine when using it for your pot odds calculation.
This can get quite complicated, but as you gain experience and get better at reducing the range of possible hands your opponent holds your outs determination will improve.
If you knew exactly what your opponent held you could determine your exact number of outs every time.
To complicate your outs computation further, the more opponents who remain in the hand the more difficult it can be to make an accurate outs guess.
If you’re in a hand with an ace and a seven and three other opponents and an ace lands on the flop do you have the best hand? If not how likely is it you can improve to win the hand?
In many games you need to be worried that one of your opponents also has an ace and her kicker is likely better than yours. You probably need to make two pair to have a chance to win, but what are the odds she’ll also hit two pair? One of your opponents may already have two pair or a set.
In a no limit game this hand is rarely profitable, because if you do hit two pair the only way you usually get enough action to make it possibly profitable is when another player has a better hand. It can be profitable in a few limit games, but usually a hand like this needs to be folded before the flop to keep from getting into an uncertain situation like the one I described.
It’s impossible to cover every situation you’ll run into concerning outs. Do the best you can to determine your real outs and learn to adjust your counts as you gain experience. You can use the examples of outs in the examples section below to practice and learn how to think about each situation.Pot Odds
Pot odds are what Texas holdem players use to determine if calling or folding is the correct course of action when facing a bet. They’re mostly used on the flop, turn, and river.
While it’s possible to consider pot odds before the flop, most players focus on their position and starting hand strength for most of their pre flop decisions. This is the correct way to play and more profitable than thinking about pre flop pot odds so this section deals almost entirely with post flop play.
Once you master every other aspect of pre flop play you can consider thinking about pot odds before the flop, but only rarely will it prove profitable.
Of course you need to learn how to correctly use pot odds in both limit and no limit play, but the easiest way for a beginner to start learning about them is with a simple limit game example. Considerations for limit and no limit play are covered in a section later on this page.Example
You’re playing in a $2 / $4 limit Texas holdem game and the blinds are $1 and $2. Two players before you call for $2 each, you call, and the small blind puts another dollar in the pot and the big blind checks. This leaves a total of $10 in the pot.
You have the ace of spades and eight of spades and the flop is the king of clubs, jack of spades, and six of spades. This gives you four to the nut flush, so you have nine outs out of 47 unseen cards. 38 cards won’t help and 9 will complete the flush for a ratio of 38:9 to complete the flush.
It’s also possible you already have the best hand, but this isn’t likely with four opponents. You may also win the hand if you hit one of the remaining aces.
This is a perfect example of one of the situations mentioned in the outs section above. Unless the board pairs, if you hit a flush you’re guaranteed to win the hand. Even if the board pairs, you’ll win most of the time. You’ll win some of the time when you hit an ace, but not all of the time.
In this situation the safest way to play is ignore everything except the flush draw at this point for your outs. The closest to true outs you probably have are 10. The 9 flush outs and an additional out for the times you win when an ace hits.
The problem is you don’t know when an ace helps you and when it simply costs you more money.
Let’ continue with the example using the 9 outs for the flush.
The small blind bets $2 into the pot, two players fold and one other player calls, leaving a total of $14 in the pot. You have to call the bet of $2 so the pot is offering odds of 14 to 2, or 7 to 1. This means if your odds of hitting your hand are better than 7 to 1 it’s the correct play mathematically to call.
Your odds are 38 to 9, or roughly 4.2 to 1. This means you have a much better chance to hit your flush than it costs you to call. You’ll still only hit the flush 1 out of every 5 times you’re in this situation, but the amount you win for the call of $2 offers 7 times the investment, making it clearly profitable in the long run.
What if the first player bet $2 and the other remaining player raised to $4?
This makes the total in the pot $16 and you have to call a bet of $4, giving you pot odds of 4 to 1. Your odds of hitting your hand are still 4.2 to 1, so no
https://diarynote-jp.indered.space
The charts below show the probability of getting a hand on the turn, on the river, or both in Texas Holdem. These charts show you example derived on the particular number of outs. The Probability is displayed in percentage, probability, 1 in y, or y to 1 format (if you cann’t make sense of it, visit our explanation of odds article). Probabilities may also be presented with 0 to 9 decimal places. Because these odds are founded on outs, it’s solely describing your probability for a card or cards to turn up founded on the quantity of wanted cards left and the quantity of cards left in the deck (47 or 46 for the turn and river). The majority of samples describe circumstances where you are not a fix to win, however illustrate the logic why that many outs are being simulated, based on the number of outs. Please note that you may need to disable popup blocking in order to the see the outs samples.ProbabilityPercentageProbability / Odds AgainstPair preflop61 in 17 – 16:1Suit cards preflop241 in 4.2 – 3.2:1Suit Connectors (2/3, KQ, …)41 in 25 – 24:1AA or KK preflop.91 in 111 – 110:1AK preflop1.21 in 83 – 82:1AKs preflop.31 in 332 – 331:1A in hand preflop161 in 6.25 – 5.25:1AA, KK, QQ, JJ1.81 in 56 – 55:1Flop being all one kind (JJJ or QQQ).241 in 425 – 424:1AA versus KK preflop (heads up).0041 in 22560 – 22559:1AK dealt preflop and hitting an A or K by the river501 in 2 – evenQQ versus AK heads up till river561 in 1.78 – 14:11 favoriteTwo cards preflop that are Js or higher91 in 11 – 10:1Beer Hand (72off) preflop (or any other nonSuit two
card combo).91 in 110 – 109:1Four flush completing (JsTs Flop Qs4sAd 6h Ks)391 in 2.6 – 3:2Open Ended Straight-Flush completing to flush or
straight by river541 in 1.85Open Ended Straight completing (JT Flop Q94 86)341 in 2.9 – ~2:1Two Pair on flop edifying to Full House171 in 5.8 – ~5:1Three of a kind (set) on flop edifying to Full House
or Quads371 in 2.7- ~3:2Pocket pair edifying to three of a kind on flop121 in 8 – 7:1No pair hand preflop edifying to a pair on the flop
(either card)321 in 3.125 – ~2:1If you have Suit cards, two will flop111 in 9 – 8:1One pair on flop edifying to two pair or three of a
kind by river221 in 4.7 – ~4:1Pocket pair edifying to three of a kind after flop91 in 11 – 10:1Two over cards edifying to a pair by river261 in 3.9 – ~3:1Two over cards and a Luck edifying to pair or
straight431 in 2.3 – 4:3Luck straight draw hitting by river171 in 6 – 5:1Luck and pair edifying to two pair or better391 in 2.6 – 3:2Backdoor Flush hitting (5s6s Flop 7sAh9c KsJs)41 in 24 – 23:1Runner Runner Straight (56 Flop 3TQ 47)1.51 in 68 – 67:1Backdoor Flush and One Over Card edifying to that pair
or flush171 in 6 – 5:1Catching Ace on turn or river (A4 Flop Q63 KA)131 in 8 – 7:1Backdoor Flush and Luck edifying to one by river
(Ac4c Flop 3s5cKs)211 in 4.8 – 3.8:1Backdoor Flush And Two Over Cards edifying to pair or
flush301 in 3.3 – 2.3:15 players on flop, that somebody has an A once one is on
board581 in 1.74 players on flop, that somebody has an A once one is on
board471 in 2.13 players on flop, that somebody has an A once one is on
board351 in 2.92 players on flop, that somebody has an A once one is on
board231 in 4.33 of one suit on board and another coming (QsTs2s) if
you have one391 in 2.6 – 3:25 players in with board paired, prospect of one of them
getting it431 in 2.44 players in with board paired, prospect of one of them
getting it341 in 33 players in with board paired, prospect of one of them
getting it261 in 42 players in with board paired, prospect of one of them
getting it171 in 5.8
After the flop, the decisions in Texas Holdem get a bit tougher. Understanding pot odds will help determine your best action from here. Check out our Texas Hold’em Pot Odds article to learn more about pot odds, what pot odds are, calculating your pot odds, implied odds, etc. You can also view our Texas Hold’em Pot Odds Chart here. Pocket jacks is known as a big danger hand in Texas Hold’em. It may look good, but the chances of a higher card turning up on the flop is 52%, giving your ‘fish-hooks’ less than half a chance of survival.
Winning Texas holdem poker players have to have a solid understanding of odds and pot odds.
Many inexperienced players make the mistake of assuming odds and pot odds are the same thing. While the two things are related, they aren’t the same.
The first thing you’re going to learn is what odds and pot odds are, how to quickly calculate them, and how to use them to improve your results at the table. Then you’ll find an extensive list of examples so you can practice what you’ve learned.
It’s a good idea to bookmark this page so you can come back and go over the examples frequently. The more times you go over them the better your ability will be to make the correct decisions at the holdem table.
The best way to develop strong odds and pot odds calculating skills is to study this page and then use what you’ve learned in live Texas holdem play. You’ll make mistakes as you play, but every time you make one make a mental note or write it down.
Then study these situations after the game to see where you made a mistake and learn how to avoid making the same mistake in the future.
A mistake that many new Texas holdem players make is not learning about odds and pot odds because they’re afraid of the math or that it’s too hard. While both items do involve some math, it isn’t difficult once you understand it.
More importantly, the most common odds and pot odds situations happen frequently so you’ll quickly memorize the important situations and won’t have to calculate many hands while playing.
You’ll also learn a few quick tricks and tips that the pros know to help you make fast decisions in the middle of a hand.Odds
Odds are a mathematical way of explaining how likely or unlikely something is to happen.
You can use odds in two different formats. The first one is a percentage and the second is a ratio. Some players find percentages easier to work with, but you need to learn how to consider Texas holdem odds as ratios. This is important because when you start using pot odds if your odds are already in ratios it saves a step. If you have the odds in percentages you have to either convert the pot to a percentage or convert the odds from a percentage to a ratio.
If this seems confusing, don’t panic. The rest of the page covers odds and pot odds using ratios so you’ll learn the best way possible.
Here’s an example of how you use odds in Texas holdem.
If you have pocket queens and have already seen the flop and it has no queens, what are the odds a queen will land on the turn?
To determine the correct odds you need to determine how many unseen cards remain in the deck. You’ve seen your two hole cards and the three board cards. So you’ve seen five out of 52 cards, leaving 47 unseen cards. You also know that there are two more queens.
This means that two of the remaining cards will give you another queen and 45 of them won’t.
This gives a ratio of 2 to 45 or 45 to 2, depending on how you want to list it. Usually the odds against number is listed first, so you’ll see 45 to 2 or 45:2.
In simpler terms, this means that on average, if you play this exact situation 47 time that you’ll get a queen twice and a card other than a queen 45 times.
If a queen doesn’t land on the turn, what are the odds of one landing on the river?
You’ve seen one more card so two cards are still queens and 44 aren’t.
Here’s another example.
If you have four to a flush after the flop, what are the odds the turn will make a flush for you?
In this situation you have 9 cards out of 47 unseen that will complete your flush. So 9 cards complete your flush and 38 don’t. This means 38 to 9 or 38:9.
If you don’t complete your flush on the turn the odds change to 37:9 on the river.
But what about the cards in your opponent’s hands and the ones that are already in the muck?
Don’t make the mistake of thinking that because your opponents have seen their cards that you don’t count them in your calculations. The only numbers that matter are the number of cards you’ve seen and the number of cards you haven’t seen.
Sometimes the card or some of the cards you need are in other player’s hands or in the muck, but it doesn’t matter. The cards you need are just as likely to be in the remaining cards to be dealt and in the long run they’ll be in any particular location an equal number of times based on the probabilities.
The way many players visualize this is by assigning each place in the deck of cards a number, 1 through 52. As the deck is ready to have the first card dealt the top card is number 1 and the second card is number 2 down to the bottom card being number 52.
As the cards are dealt, burned, folded, etc. more cards are used from the top of the deck. It doesn’t matter what happens to each card or if you see it or not.
In the long run each card has an equal chance to be number 1, number 36, number 52, or any other number. Over millions of hands each individual card will be in each of the 52 places the same number of times.
This means that if you need the ace of clubs to complete your hand it’s an unseen card and doesn’t matter where it’s located during the current stack. Over the long run it’ll be in each of the 52 positions an equal number of times, so all you can do is work with the seen and unseen cards.
You can also use odds to determine the likelihood of other things happening during a hand.
What are the odds that the first card you’re dealt is an ace?
You know the deck has 52 cards and four aces, so the odds of the first card you receive being an ace are 48:4. This can be reduced to 12:1. You reduce ratios by dividing the same number into both numbers. In this case you divide both 48 and 4 by 4.
Another way to look at this is 1 out of every 13 cards on average is an ace. This makes sense because each suit has 13 cards and one of them is an ace.
Ratios are important because you use them when determining pot odds. You’ll learn more about pot odds in the next section.
But if you want to know the odds of things like getting dealt pocket aces you need to use a different kind of probability.
Before teaching you about this type of probability you need to make sure you want to try to learn it. If you’re getting confused or worried about all of this math, skip to the pot odds section. It builds on what you’ve already learned and you don’t have to know anything about this next part in order to be a master Texas holdem player.
The main difference is you need to look at the possibilities of how many events out of how many possibilities instead of the positive verses the negative. This is easier to understand using an example.
As you’ve already seen when you determine a ratio or odds you compare the cards that can help you and the ones that can’t. When you determine the possibility of getting dealt pocket aces you need to use the number of cards that can help achieve this out of the total number of cards.
So the odds of getting an ace as the first card are 4 out of 52 and as your second card are 3 out of 51. After the first card there are only 51 remaining cards in the deck and only 3 remaining aces.
Here’s why this distinction is important. To get the actual chances of being dealt pocket aces you put 4 over 52, like a fraction, and 3 over 51 and multiply them.
This gives you the chances of being dealt pocket aces as 220 to 1.
When you multiply the fractions you get 12 over 2,652, which reduce to 1 over 221. This is then made back into a ratio like discussed above. 1 time you receive pocket aces and 220 times you don’t, so the odds are 220 to 1.Outs
Once you understand how odds work, the next thing you must understand is how to determine how many outs you have in any situation where you need to understand your pot odds.
You combine your knowledge of odds with the number of outs and the amount in the pot and of the bet you’re facing to figure out your pot odds.
Your outs are the cards that improve your hand enough to win the pot. Rarely can you be 100% sure about every one of your outs, but in most situations you can make an educated guess.Example
If you have a king and a ten and the flop has an ace and a king, if one of your opponents bets the odds are they have an ace. This means you’re behind in the hand, but if you hit one of the other two kings or one of the remaining three tens on the turn or river you stand a good chance to win.
You can’t be certain either a king or ten will win the hand because your opponent may have a set of aces or two pair with aces and either kings or the other flop card. This isn’t likely but it does happen.
One of the most common situations concerning outs is when you have four to a flush on the flop. This leaves nine outs to complete the flush. Each suit has 13 cards and you have four of them, leaving nine outs.
But will each of the nine cards guarantee a win?
Rarely is anything guaranteed at the holdem table. If the board pairs and you hit your flush you can still lose to a full house. If you don’t have an ace high flush you might lose to a higher flush.
When you’re trying to determine how many outs you have, try to make a realistic guess on how many will actually win the hand.
You need to use everything that has happened in the hand so far, what you know about your opponents, and the range of hands your opponent is likely holding to make your best estimate.
This information is directly related to the level of competition you’re facing and the limits of the table.Example
When you’re playing at micro or low limits and your competition isn’t very good overall it’s likely that any flop that holds an ace has paired an ace in someone’s hand. Low limit players often play any ace. While better players and higher limit players also play hands with aces, they usually don’t play the ones with smaller side cards like you see at the lower levels.
When you’re trying to determine your number of outs you can adjust the number based on different factors. If you have 10 outs but think that 10% of the time your opponent will hold a better hand anyway you can adjust your outs to nine when using it for your pot odds calculation.
This can get quite complicated, but as you gain experience and get better at reducing the range of possible hands your opponent holds your outs determination will improve.
If you knew exactly what your opponent held you could determine your exact number of outs every time.
To complicate your outs computation further, the more opponents who remain in the hand the more difficult it can be to make an accurate outs guess.
If you’re in a hand with an ace and a seven and three other opponents and an ace lands on the flop do you have the best hand? If not how likely is it you can improve to win the hand?
In many games you need to be worried that one of your opponents also has an ace and her kicker is likely better than yours. You probably need to make two pair to have a chance to win, but what are the odds she’ll also hit two pair? One of your opponents may already have two pair or a set.
In a no limit game this hand is rarely profitable, because if you do hit two pair the only way you usually get enough action to make it possibly profitable is when another player has a better hand. It can be profitable in a few limit games, but usually a hand like this needs to be folded before the flop to keep from getting into an uncertain situation like the one I described.
It’s impossible to cover every situation you’ll run into concerning outs. Do the best you can to determine your real outs and learn to adjust your counts as you gain experience. You can use the examples of outs in the examples section below to practice and learn how to think about each situation.Pot Odds
Pot odds are what Texas holdem players use to determine if calling or folding is the correct course of action when facing a bet. They’re mostly used on the flop, turn, and river.
While it’s possible to consider pot odds before the flop, most players focus on their position and starting hand strength for most of their pre flop decisions. This is the correct way to play and more profitable than thinking about pre flop pot odds so this section deals almost entirely with post flop play.
Once you master every other aspect of pre flop play you can consider thinking about pot odds before the flop, but only rarely will it prove profitable.
Of course you need to learn how to correctly use pot odds in both limit and no limit play, but the easiest way for a beginner to start learning about them is with a simple limit game example. Considerations for limit and no limit play are covered in a section later on this page.Example
You’re playing in a $2 / $4 limit Texas holdem game and the blinds are $1 and $2. Two players before you call for $2 each, you call, and the small blind puts another dollar in the pot and the big blind checks. This leaves a total of $10 in the pot.
You have the ace of spades and eight of spades and the flop is the king of clubs, jack of spades, and six of spades. This gives you four to the nut flush, so you have nine outs out of 47 unseen cards. 38 cards won’t help and 9 will complete the flush for a ratio of 38:9 to complete the flush.
It’s also possible you already have the best hand, but this isn’t likely with four opponents. You may also win the hand if you hit one of the remaining aces.
This is a perfect example of one of the situations mentioned in the outs section above. Unless the board pairs, if you hit a flush you’re guaranteed to win the hand. Even if the board pairs, you’ll win most of the time. You’ll win some of the time when you hit an ace, but not all of the time.
In this situation the safest way to play is ignore everything except the flush draw at this point for your outs. The closest to true outs you probably have are 10. The 9 flush outs and an additional out for the times you win when an ace hits.
The problem is you don’t know when an ace helps you and when it simply costs you more money.
Let’ continue with the example using the 9 outs for the flush.
The small blind bets $2 into the pot, two players fold and one other player calls, leaving a total of $14 in the pot. You have to call the bet of $2 so the pot is offering odds of 14 to 2, or 7 to 1. This means if your odds of hitting your hand are better than 7 to 1 it’s the correct play mathematically to call.
Your odds are 38 to 9, or roughly 4.2 to 1. This means you have a much better chance to hit your flush than it costs you to call. You’ll still only hit the flush 1 out of every 5 times you’re in this situation, but the amount you win for the call of $2 offers 7 times the investment, making it clearly profitable in the long run.
What if the first player bet $2 and the other remaining player raised to $4?
This makes the total in the pot $16 and you have to call a bet of $4, giving you pot odds of 4 to 1. Your odds of hitting your hand are still 4.2 to 1, so no
https://diarynote-jp.indered.space
コメント